

Contents lists available at ScienceDirect

Journal of Molecular Spectroscopy

journal homepage: www.elsevier.com/locate/yjmsp

Threshold photoelectron spectroscopy and density functional theory studies on the CF_2Cl_2 ionization energies towards the B^2B_1 and C^2A_1 ionic states

Check for updates

Baokun Shan^a, Hanhui Zhang^a, Tongpo Yu^a, Yan Chen^a, Xiangkun Wu^b, Xiaoguo Zhou^a,^{*}, Shilin Liu^a

^a Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China

^b Paul Scherrer Institute, 5232 Villigen, Switzerland

ABSTRACT

Threshold photoelectron spectroscopy and density functional theory calculations were performed on dichlorodifluoromethane (CF₂Cl₂) in the photon energy range of 11.70–13.90 eV. Using optimized geometries and vibrational frequencies of the CF₂Cl₂ neutral and the corresponding cation in the B²B₁ and C²A₁ states at the ω B97XD/aug-cc-pVTZ level of theory, the Franck-Condon factor simulation was conducted for these two bands. According to the great agreement between experimental and simulated spectra, the observed vibrational progressions of the B²B₁ band was reliably assigned, where the 0–0 transition band indicated a precise adiabatic ionization energy (AIE) towards the B²B₁ ionic state of 13.150 ± 0.005 eV. The three symmetric vibrational frequencies of B²B₁ were determined to be $\nu_1^+ = 1170 \text{ cm}^{-1}$, $\nu_2^+ = 645 \text{ cm}^{-1}$, and $\nu_4^+ = 242 \text{ cm}^{-1}$, respectively. Similarly, the AIE towards the C²A₁ ionic state was suggested to be 13.340 eV, based on its plausible Franck-Condon simulation.

1. Introduction

Dichlorodifluoromethane (CF₂Cl₂) has been extensively used in industry as a plasma-etching agent, refrigerant, solvent, aerosol propellant or blowing agent [1–3]. Meanwhile, it has been known as a typical greenhouse gas due to its strong ozone-depleting substance role in the stratosphere[4–7]. Ionization energy (IE) and dissociation dynamics of CF₂Cl₂ are necessary to in-depth understand the whole ion chemistry of various fluorocarbons and its potential applications in the atmosphere [8–10]. However, there is a lack of information on the structure and fundamental parameters of CF₂Cl₂ cation relative to its neutral, especially the electronically excited states.

Based on the $[core](7b_2)^2(12a_1)^2(6b_1)^2(3a_2)^2(8b_2)^2$ electron configuration of neutral CF₂Cl₂ molecule [11], the five lowest-lying electronic states of CF₂Cl₂⁺ cation are X²B₂, A²A₂, B²B₁, C²A₁, and D²B₂ state, respectively [12]. In the past decades, many experimental approaches were applied to measure vertical ionization energies (VIEs) and adiabatic ionization energies (AIEs) of CF₂Cl₂ towards these five ionic states, such as photoionization mass spectrometry (PI-MS) [5,6], electron momentum spectroscopy (EMS) [13,14], electron-impact mass spectrometry (EI-MS) [8] and vacuum–ultraviolet (VUV) fluorescence [15]. Most recently, using high-resolution threshold photoelectron spectroscopy (TPES) and theoretical calculations, Zhang *et al.* [16] have obtained a

corrected AIE value of 11.565 ± 0.010 eV for the ground state of CF₂Cl⁺₂ cation, as well as a few vibrational frequencies. This AIE value is obviously smaller than the spectral threshold onset, which had extensively been thought as the AIE. Therefore, this combined method of experimental photoelectron spectra and FC simulation provides a powerful tool to precisely determine AIE [17–20] or electron affinity (EA) values [21–23].

In comparison to the X²B₂ state, the electronically excited states of $CF_2Cl_2^+$ have been much less studied. By measuring photoelectron spectroscopy (PES) using He-I electric discharge lamp, Bunzli et al. reported the VIE values of 12.55, 13.13, 13.46, 14.37 eV for the A^2A_2 , B²B₁, C²A₁, D²B₂ states [24]. Using the same approach, Cvitas *et al.* [25] obtained the approximate VIE results. In addition to these VIE values, Jadrny et al. [26] observed vibrational structures of the B^2B_1 and D^2B_2 states in their photoelectron spectra. Using the peak maximum of the $B^{2}B_{1}$ band, they suggested the AIE towards $B^{2}B_{1}$ as 13.120 eV. Similarly but with the higher resolution, Pradeep et al. [12] confirmed the vibrational progressions of these two states, and gave a cursory assignment. It was worth noting that in their assignment the 0-0 band was located at the low-energy shoulder (13.078 eV as a threshold onset) whereas the peak maximum (13.116 eV) was attributed to be the $X^1A_1(0,0,0,0) \rightarrow B^2B_1(0,0,0,1)$ transition, where only four vibrational modes of a_1 symmetry, $(\nu_1^+, \nu_2^+, \nu_3^+, \nu_4^+)$, were excited and the detailed

* Corresponding author. *E-mail address:* xzhou@ustc.edu.cn (X. Zhou).

https://doi.org/10.1016/j.jms.2021.111506

Received 4 June 2021; Received in revised form 7 July 2021; Accepted 8 July 2021 Available online 14 July 2021 0022-2852/© 2021 Elsevier Inc. All rights reserved. vibrational motions were described in Fig. 3. Thus, they deduced that the AIE values towards B^2B_1 and D^2B_2 states were 13.078 and 14.126 eV, respectively. The similar spectral structures were observed in Seccombe *et al.*'s TPES but no assignment was given [10]. By calculating molecular structures and harmonic force constant matrix elements of the ground-state CF_2Cl_2 neutral and cation in electronically excited states with the self-consistent field (SCF) method, Takeshita *et al.* [27] concluded that the $X^1A_1(0,0,0,0) \rightarrow B^2B_1(0,0,0,0)$ and $X^1A_1(0,0,0,0) \rightarrow B^2B_1(0,0,0,1)$ transitions had the strongest intensities with the approximate energies. In other words, the peak maximum of B^2B_1 band in experiment was suggested to be the 0–0 band. Apparently, the identification of the 0–0 transition of B^2B_1 band is still controversial in the previous studies. Therefore, our major aim of this work is just to precisely determine AIE for the formation of $CF_2Cl_2^+$ in the B^2B_1 and C^2A_1 states.

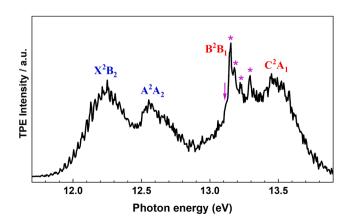
In principle, AIE is defined as the energy difference between neutral and cation after zero-point energy corrections, each at its own optimized geometry, while is also determined as the 0-0 transition energy in experimental TPE spectra. However, some hot bands are probably observed as the threshold onsets in experimental spectra, and furthermore, the 0-0 transition may be too weak to be observed when the molecular geometry is seriously changed in photoionization [17,18,20]. Thus, in this work, the TPES of $CF_2Cl_2^+$ in the B^2B_1 and C^2A_1 states was re-measured using the threshold photoelectron-photoion coincidence (TPEPICO) double velocity map imaging apparatus at the Hefei Light Source. To assign distinctly vibrational structures, the Franck-Condon (FC) factor simulations have been done with the aid of high-level quantum chemical calculations on optimized geometries and vibrational frequencies of ground-state CF₂Cl₂ neutral and cation in the B²B₁ and C^2A_1 states. Then, the AIE and VIE values towards these two excited states are reliably determined based on the correct vibrational assignments.

2. Experimental and computational methods

The photoionization experiments were performed at the BL09U beamline of the National Synchrotron Radiation Laboratory at Hefei, China, using the TPEPICO velocity map imaging spectrometer. The detailed descriptions of the beamline and configurations of the apparatus have been introduced previously [28], and only a brief overview is given here. The vacuum ultraviolet (VUV) light in the energy range of 11.70–13.90 eV from synchrotron radiation was dispersed by a monochromator, and then passed through a gas filter filled with argon to eliminate high harmonics, as the photoionization light source. The absolute VUV photon energy was calibrated with the well-known ionization energies of argon and krypton. The photon energy resolution ($E/\Delta E$) was about 2000 in the present experiments [29]. A silicon photodiode was used to record photon flux for normalizing ion signal.

A mixture gas (1.2 atm) of CF₂Cl₂ (99.99% purity) and helium (1/9 v/v) was injected into the vacuum chamber through a 20-µm-diameter pinhole to form a continuous molecular beam. By collimated with a 0.5mm-diameter skimmer, the molecular beam intersected with the VUV photons at 10 cm downstream from the nozzle. Under the action of a dc extraction electric field (\sim 15 V·cm⁻¹), photoelectrons and photoions were pushed away in opposite directions and projected to positionsensitive detectors with double velocity map imaging. The TPEPICO measurements were performed with a single-start multiple-stop data acquisition mode [30], in which photoelectrons were used to trigger time-of-flight (TOF) measurements of ions. According to the special ion optics, the electron image was remarkably magnified with the delayed flight time. A mask with a 1-mm-diameter hole and a concentric ring was placed in front of the electron detector. Due to the velocity focus effect, the electrons with zero-kinetic energy, usually called as "threshold photoelectrons", together with those energetic electrons with an initial momentum towards the electron detector (so-called "false threshold photoelectrons"), passed through this hole and contributed to TPES. Meanwhile, these energetic electrons with a perpendicular initial

momentum would partially pass the ring of the mask, and thus their intensities were used to subtract the TPES contamination contributed by those "false threshold photoelectrons" [31]. This modification approach has been successfully applied recently in dissociative photoionization of many molecules, *e.g.* NO₂ [32], CF₃Cl [33], halocyclohexanes [34], fluorocyclohexane [20], and vanillin [35].


Similar to the recent study of $CF_2Cl_2^+$ in ground state [16], density functional theory (DFT) and time-dependent DFT (TD-DFT) were used to calculate optimized geometries and vibrational frequencies of the CF_2Cl_2 neutral in ground state and the $CF_2Cl_2^+$ cation in the B^2B_1 and C²A₁ states, respectively. A hybrid functional with a dispersion correction approach, ω B97XD [36] with the aug-cc-pVTZ set, was performed as done in the ground state of $CF_2Cl_2^+$ cation [16], in comparison to the previous calculations like HF [27], MRCI [37], CASSCF and CASPT2 [11]. Using the calculated geometries, vibrational frequency and vector of each vibrational mode, and FC factors of the $CF_2Cl_2(X^1A_1) \rightarrow$ $CF_2Cl_2^+(B^2B_1 \text{ or } C^2A_1)$ transitions (defined as the overlapping integral of the vibrational wave functions between initial state and target state) were calculated in a harmonic approximation using the ezSpectrum software [38]. Then, the photoelectron spectra of $CF_2Cl_2^+$ in B^2B_1 and $C^{2}A_{1}$ states were simulated with a hypothesis of vibrational temperature at 250 K and full width at the half maximum (FWHM) of 25 meV to account for rotational envelope. Based on the well-done spectral simulation, the experimentally observed vibrational progressions were reliably assigned. Therefore, the AIE values towards the B^2B_1 and C^2A_1 ionic states were precisely determined as the corresponding 0-0 band positions. All the quantum chemical computations were performed with the Gaussian 16 A.03 program package [39].

3. Results and discussion

3.1. Threshold photoelectron spectrum of CF₂Cl₂

Fig. 1 shows the experimental TPES of CF_2Cl_2 in the photon energy range of 11.70–13.90 eV, with a step of 5 meV. Four resonance bands are observed and attributed to the photoionization transitions of CF_2Cl_2 towards the X^2B_2 , A^2A_2 , B^2B_1 , and C^2A_1 ionic states, respectively, referring to the previous studies [12,24–26]. After being normalized with the photon flux, our spectrum is in general agreement with the previous He-I photoelectron spectra [12,24–26], regardless of resonance energies and relative intensities. Thanks to the better vibrational resolution at the rising edge, we have successfully analyzed the first two electronic states, X^2B_2 and A^2A_2 recently, and an accurate AIE towards the X^2B_2 state (11.565 eV) has been achieved from the FC factor simulation [16].

In comparison to the previous photoelectron spectra [12,25], the

Fig. 1. Threshold photoelectron spectrum of CF_2Cl_2 in the photon energy range of 11.70–13.90 eV, with a step size of 5 meV. The corresponding electronic states of $CF_2Cl_2^+$ are labeled, and several distinct vibrational peaks of the B^2B_1 band are noted with stars, while a weak shoulder peak is marked with an arrow.

spectral intensity in the FC gap between the A^2A_2 and B^2B_1 states is nonzero (Fig. 1). It is well-known that under the action of one photon with fixed energy like He-I light, the self-ionization of neutral Rydberg states is excluded from photoelectron spectra. Thus, the non-zero baseline of present TPES in this FC gap is contributed by the self-ionization of Rydberg states. From 12.90 eV, the TPE intensity gradually increases, indicative of the formation of the second electronically excited state, B^2B_1 . It is worth noting that a few vibrational peaks can be distinctly identified below 13.38 eV and noted with stars in Fig. 1, while there is no clear vibrational structure observed for the C^2A_1 state spanning from 13.38 to 13.90 eV. Moreover, a weak shoulder peak at 13.120 eV with an arrow is also observed just slightly lower than the strongest peak of B^2B_1 band (13.150 eV), which generally agrees with the observation of previous spectra [12,26].

Table 1 summaries the reported ionization energies of CF_2Cl_2 towards the low-lying ionic electronic states. Apparently, all VIEs are greatly consistent, however, only two works have reported the different AIEs due to inconsistent vibrational assignments. Pradeep *et al.* [12] attributed this shoulder peak to the 0–0 transition of the B^2B_1 band, while Jadrny *et al.* [26] preferred the strongest peak, and assigned this shoulder peak as a hot band. In fact, these previous assignments were arbitrarily achieved only according to energy intervals. Therefore, a reliable vibrational assignment for the B^2B_1 band is necessary to precisely determine its AIE value. In addition, due to the overlapping by the B^2B_1 band, the C^2A_1 band does not show a distinct threshold onset in Fig. 1. Thus, its AIE value (*i.e.* the 0–0 transition) is impossible to be determined without a spectral simulation.

3.2. Geometries and frequencies of $CF_2Cl_2^+$ in the B^2B_1 and C^2A_1 states

In FC photoionization, CF_2Cl_2 is kept as the C_{2V} symmetry regardless of the B^2B_1 and C^2A_1 ionic states. Optimized geometries of the CF_2Cl_2 neutral and the corresponding cation in the B^2B_1 and C^2A_1 states at the $\omega B97XD$ /aug-cc-pVTZ level are summarized in Table 2, as well as the previously calculated parameters using HF/MIDI-4 [37], CASPT2/ANO-L and CASSCF/ANO-L methods [11]. As confirmed by our recent calculations of the $CF_2Cl_2(X^1A_1) \rightarrow CF_2Cl_2^+(X^2B_2)$ transition [16], the $\omega B97XD$ /aug-cc-pVTZ level was reliable enough to compute structure and vibrational frequencies of the ground-state $CF_2Cl_2^+$ cation. Not only these, all optimized structures of the CF_2Cl_2 neutral and cation in Table 1 also generally agree well at the DFT and CASPT2 levels. Thus, the $\omega B97XD$ /aug-cc-pVTZ level of theory is subsequently used to calculate harmonic vibrational frequencies and the corresponding vectors.

Unlike the significant geometrical changes upon photoionization to the ionic ground state (X^2B_2) [16], only a few variations can be observed for molecular structure when being photoionized to the B^2B_1 and C^2A_1

Table 1

Vertical ionization energies (VIEs, eV) and adiabatic ionization energies (AIEs, eV) of CF₂Cl₂ reported in experiments.

, , , ,	1					
	Method	X^2B_2	A^2A_2	B^2B_1	C^2A_1	D^2B_2
VIEs						
Turner et al. [40]	PES	12.3	12.6	13.2	13.5	14.4
Bunzli et al. [24]	PES	12.27	12.55	13.13	13.46	14.37
Cvitas et al. [25]	PES	12.26	12.53	13.11	13.45	14.36
Jadrny et al. [26]	PES	12.24	12.54	13.120	13.47	14.353
Seccombe <i>et al.</i> [10]	TPES	12.28	12.55	13.14	13.45	14.41
Our work AIEs	TPES	12.250	12.550	13.150	13.450	-
Jadrny <i>et al.</i> [26]	PES	-	-	13.120	-	14.123
Pradeep <i>et al.</i> [12]	PES	11.734	-	13.078	-	14.126
Our work	TPES	11.565 ^a	-	13.150	13.340	-

^a . from Ref.[16]

Table 2

Optimized geometrical parameters of the neutral CF₂Cl₂ and the corresponding cation in the B²B₁ and C²A₁ states calculated at different levels of theory, where the bond length (R) is in unit of Å and the bond angle (Θ) is in degree.

	ωB97XD	HF [27]	CASSCF [11]	CASPT2 [11]
$CF_2Cl_2(X^1A_1)$				
R(C-F)	1.325	1.309	-	1.330
R(C-Cl)	1.770	1.759	-	1.755
$\Theta(F-C-F)$	108.2	108.0	-	108.0
Θ (Cl-C-Cl)	111.4	111.7	-	111.7
$CF_2Cl_2^+(B^2B_1)$				
R(C-F)	1.294	1.277	1.287	1.295
R(C-Cl)	1.816	1.807	1.892	1.827
Θ(F-C-F)	113.5	113.3	112.7	113.7
Θ (Cl-C-Cl)	111.8	111.4	109.7	113.2
$CF_2Cl_2^+(C^2A_1)$				
R(C-F)	1.289	1.281	1.282	1.295
R(C-Cl)	1.874	1.819	1.864	1.850
Θ(F-C-F)	112.8	112.2	111.5	112.1
Θ(Cl-C-Cl)	113.0	113.7	113.7	114.5

states. For the B²B₁ state, the C-F bonds are slightly reduced form 1.325 Å in neutral to 1.294 Å in cation with the increased C-Cl bonds (form 1.770 Å to 1.816 Å), and the bond angle Θ (F-C-F) increases from 108.2° in neutral to 113.5° in cation but O(Cl-C-Cl) almost remains unchanged. Naturally, the scissoring vibration of the CCl₂ group (ν_4^+) might be excited in photoionization to the B^2B_1 ionic state. Meanwhile, the excitations of C-F and C-Cl stretching could be involved as well. Moreover, such minor changes connote that the strongest vibrational peak in the B^2B_1 band of TPES should be close to the 0–0 transition. It has been further confirmed by the FC factor calculations in Section 3.3. In addition, a geometric variation from neutral to the C^2A_1 ionic state is similar to the photoionization to the B²B₁ state. Two longer C-Cl and shorter C-F bond lengths imply the more significant excitations of C-F and C-Cl stretching when being ionized to the C^2A_1 state. In other words, the vibrational excitation becomes more complicated with the $CF_2Cl_2^+(C^2A_1)$ formation.

We also calculated the four highest occupied molecular orbitals of the neutral CF_2Cl_2 molecule. The X^2B_2 , A^2A_2 , B^2B_1 , and C^2A_1 ionic states are produced by removing an electron from these orbitals. It is worth noting that these molecular orbitals are all contributed by the nonbonding orbitals of lone pair electrons of Cl atom, as shown in Fig. 2. However, unlike the HOMO and HOMO-1 for X^2B_2 and A^2A_2 states, HOMO-2 and HOMO-3 include two non-bonding orbitals with matching phases (Fig. 2) and prefer to form Π -bond-like interaction between two Cl atoms, especially the latter. As a result, Θ (Cl-C-Cl) is almost maintained unchanged although the C-Cl bonds are apparently weakened, regardless of the B^2B_1 and C^2A_1 states, which agrees with the conclusion of geometry calculations.

To perform the FC factor simulation, the vibrational vectors and frequencies of CF₂Cl⁺₂ cation in the B²B₁ and C²A₁ states were calculated respectively. According to the selection rule, only vibrational modes of a₁ symmetry might be excited in photoionization [12,26,27]. To be consistent with the previous assignment [26], four total symmetric modes are labeled as ν_1^+ to ν_4^+ , and their experimental and calculated values are summarized in Table 3 for comparison. As shown in Fig. 3, both ν_1^+ and ν_2^+ modes are mainly contributed by the motion of carbon atom along the C_{2v} symmetric axis, and the difference is that they are combined with the C-F bond symmetric stretching and the F-C-F scissoring, respectively. The ν_3^+ mode is a synergetic motion of the F-C-F scissoring and the C-Cl stretching, while the ν_4^+ mode is mainly attributed to the Cl-C-Cl scissoring.

As shown in Table 3, the HF/MIDI-4 frequencies are apparently overestimated, compared with the other two methods, but the ω B97XD and CASSCF/ANO-L data are consistent. However, the v_4^+ frequency of 306 cm⁻¹ for B²B₁ suggested by Pradeep *et al.*'s photoelectron spectra [12] is much larger than all calculated values, implying that their

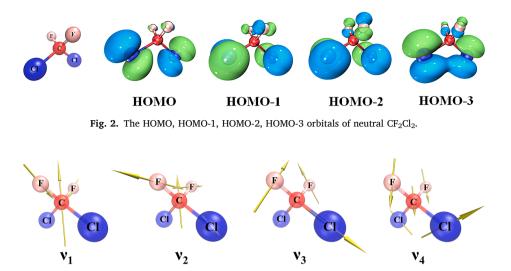


Fig. 3. Four total symmetric vibrational modes of the CF2Cl2⁺ cation, where the yellow arrows represent the vibrational displacement vectors of atoms.

Table 3

Vibrational frequencies (cm⁻¹) of the total symmetric vibrational modes for the B^2B_1 and C^2A_1 state of $CF_2Cl_2^+$ cation, calculated at the different quantum chemical levels of theory, comparing to the experiment measurement.

Mode	Theo.			Expt.	xpt.		
	ωB97XD	HF [27]	CASSCF [11]	PES [12]	PES [26]	TPES ^a	
B^2B_1							
ν_1^+	1145	1271	1172	-	1097	1170	
ν_2^+	651	712	649	-	565	645	
ν_3^+	412	454	350	-	-	-	
ν_4^+	255	276	233	306	210	242	
C^2A_1							
ν_1^+	1150	1253	1212	-	-	-	
ν_2^+	648	702	680	-	_	-	
ν_3^+	369	453	394	-	-	-	
ν_4^+	237	282	248	_	-	-	

^a . the present TPES measurement.

assignments were arbitrary due to insufficient vibrational resolution. Thanks to the more distinct vibrational peaks of B^2B_1 band in the present TPES, the vibrational frequencies could be reliably determined with the aid of a credible spectral assignment. In Fig. 1, the observed energy intervals between the peaks with stars around the band origin are 1170, 645 and 242 cm⁻¹, respectively. To our surprise, these values are close to those calculated frequencies for ν_1^+ , ν_2^+ , and ν_4^+ vibrational modes for the B^2B_1 ionic state at the ω B97XD level, indicative of their spectral contributions, which are confirmed by the FC simulations in Section 3.3. In addition, the vibrational frequencies of ν_1^+ to ν_4^+ modes for C^2A_1 state are close to those of B^2B_1 owing to their approximate geometries. However, according to its unresolved vibrational structure in Fig. 1, we cannot infer any vibrational assignment for this band.

3.3. Franck-Condon factor simulated TPE spectra

Using the optimized geometries and the vibrational frequencies of CF_2Cl_2 neutral and cation at the $\omega B97XD$ level, the FC factors of the CF_2Cl_2 (X^1A_1) $\rightarrow CF_2Cl_2^+(B^2B_1/C^2A_1)$ transitions were calculated. The temperature was adjusted from 20 to 300 K, in order to get best simulation. The max vibrational quantum of the neutral ground state was set as 5 to account for probable hot band excitations. Table 4 lists the calculated major vibrational excitations in the formation of $CF_2Cl_2^+(B^2B_1)$, including peak positions (after an energy shift according to the systemic error of the calculated as the product of FC factor and

Table 4

Major vibrational peak positions of the simulated TPE spectra in the B^2B_1 band range, together with Franck-Condon factors (FCFs) and intensities.

Peak position /eV a	FCF	Intensity	Assignment
			$\overline{X^1A_1(\nu_{1-4}) \rightarrow B^2B_1(\nu_{1-4}^+)}$
13.118	-0.408	0.014	$(0,0,0,2) \rightarrow (0,0,0,1)$
13.119	-0.397	0.045	$(0,0,0,1) \rightarrow (0,0,0,0)$
13.147	0.519	0.030	$(0,0,1,0) \rightarrow (0,0,1,0)$
13.152	0.255	0.019	$(0,0,0,1) \rightarrow (0,0,0,1)$
13.153	0.547	0.299	$(0,0,0,0) \rightarrow (0,0,0,0)$
13.180	0.381	0.016	$(0,0,1,0) \to (0,0,1,1)$
13.184	0.364	0.011	$(0,0,0,2) \to (0,0,0,3)$
13.185	0.420	0.051	$(0,0,0,1) \to (0,0,0,2)$
13.186	0.402	0.162	$(0,0,0,0) \to (0,0,0,1)$
13.203	0.191	0.010	$(0,0,0,1) \to (0,1,0,0)$
13.206	0.126	0.016	$(0,0,0,0) \to (0,0,1,0)$
13.218	0.294	0.025	$(0,0,0,1) \to (0,0,0,3)$
13.219	0.204	0.042	$(0,0,0,0) \rightarrow (0,0,0,2)$
13.237	-0.263	0.069	$(0,0,0,0) \rightarrow (0,1,0,0)$
13.267	0.234	0.016	$(0,0,0,1) \to (1,0,0,0)$
13.269	-0.202	0.012	$(0,0,0,1) \rightarrow (0,1,0,2)$
13.270	-0.194	0.037	$(0,0,0,0) \rightarrow (0,1,0,1)$
13.295	-0.306	0.010	$(0,0,1,0) \to (1,0,1,0)$
13.300	-0.322	0.104	$(0,0,0,0) \to (1,0,0,0)$
13.333	-0.248	0.018	$(0,0,0,1) \to (1,0,0,2)$
13.334	-0.237	0.056	$(0,0,0,0) \to (1,0,0,1)$
13.367	-0.120	0.014	$(0,0,0,0) \to (1,0,0,2)$
13.385	0.155	0.024	$(0,0,0,0) \to (1,1,0,0)$
13.418	0.114	0.013	$(0,0,0,0) \to (1,1,0,1)$
13.449	0.138	0.019	$(0,0,0,0) \to (2,0,0,0)$
13.482	0.101	0.010	$(0,0,0,0) \to (2,0,0,1)$

^a . after a shift to higher energy by 0.410 eV.

thermal population at 250 K), and vibrational assignments, where those weak transitions (the calculated transition intensity is smaller than 0.010) are ignored from Table 4 in order to simplify discussions.

As indicated in Table 4, the ν_4^+ mode (Cl-C-Cl scissoring) is the most important contributor for the whole B²B₁ band in the TPE spectrum, and the corresponding FC factors gradually decrease with its quantum number, regardless of the sole and combined vibrational progressions. Moreover, the ν_1^+ and ν_2^+ modes are also excited in photoionization to the B²B₁ state. It is worth noting that the 0–0 transition is calculated to have the strongest intensity in the whole B²B₁ band, that is, the peak maximum in TPES should correspond to the 0–0 transition.

To confirm our FC simulation, the calculated and our experimental spectra were directly compared together in Fig. 4a. In fact, an optimized temperature of 250 K was chosen to get the best fitting, which is

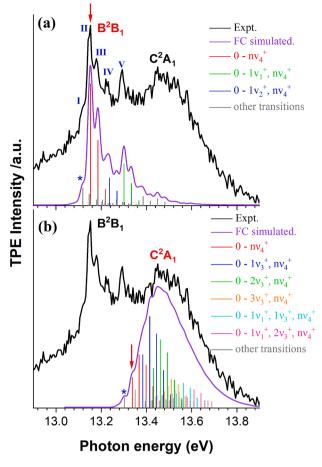


Fig. 4. The Franck-Condon simulated and experimental spectra for photoionization from CF_2Cl_2 neutral to cation in the B^2B_1 and C^2A_1 states, where the AIE values of these ionic states are marked in red arrows as well as the major hot bands are pointed out with blue stars, and a FWHM of 25 meV is used in simulation.

consistent with our recent simulation of the ground ionic state [16]. Due to thermal population of initial vibrational levels, a few vibrational progressions including the ν_3 and ν_4 hot bands of neutral CF₂Cl₂ might be involved in this TPES. As indicated in Table 4, several hot band transitions have considerable intensities indeed, *e.g.* $X^1A_1(0,0,0,1) \rightarrow B^2B_1(0,0,0,0), X^1A_1(0,0,0,1) \rightarrow B^2B_1(0,0,0,2), and X^1A_1(0,0,1,0) \rightarrow B^2B_1(0,0,1,0)$. Overall, the vibrational excitations in photoionization towards CF₂Cl²(B²B₁) are much complicated than the case of X^2B_2 .

As shown in Fig. 4a, a satisfying FC simulated spectrum was obtained for the B^2B_1 band, where a few distinct vibrational peaks could be identified without doubt. The sticks in Fig. 4a clearly show these vibrational progressions. The peak I at 13.120 eV is the beginning of a hot band series of $X^1A_1(0,0,0,1) \rightarrow B^2B_1(0,0,0,n)$ (n = 0–3), while the peaks II (13.150 eV) and III (13.180 eV) are the first two bands of the transition progression of $X^1A_1(0,0,0,0) \rightarrow B^2B_1(0,0,0,n)$ (n = 0–2). Moreover, the peaks IV (13.230 eV) and V (13.295 eV) are the first bands of the combination transitions of $X^1A_1(0,0,0,0) \rightarrow B^2B_1(0,1,0,n)$ (n = 0–2) and $X^{1}A_{1}(0,0,0,0) \rightarrow B^{2}B_{1}(1,0,0,n)$ (n = 0–2), respectively. Table 5 lists our FC simulated and experimental peaks of I-V (also marked with stars in Fig. 1), as well as the previous photoelectron spectral data [26]. Therefore, three vibrational frequencies of B^2B_1 ionic state can be readily derived from these assignments, *i.e.* $v_1^+ = 1170 \text{ cm}^{-1}$, $v_2^+ = 645$ cm⁻¹, and $\nu_4^+ = 242$ cm⁻¹, which are listed in Table 3 and agree very well with our calculated data. In addition, the ν_4 frequency of the neutral CF_2Cl_2 is determined to be 274 cm⁻¹ from the first hot band at 13.120 eV, which is also in good agreement with the previous results (258-285 cm^{-1}) [25–27]. All these agreements provide solid evidences that the

Table 5

The major vibrational peak positions of the experimental and FC simulated TPE
spectra in the B ² B ₁ band range, together with previous assignments.

Peak	Present			Previous		
		Theo. ^a (eV)	Assignment $X^{1}A_{1}(\nu_{1.4}) \rightarrow B^{2}B_{1}$ $(\nu_{1.4}^{+})$	PES [26] (eV)	Assignment $X^{1}A_{1}(\nu_{1-4}) \rightarrow$ $B^{2}B_{1}(\nu_{1-4}^{+})$	
Ι	13.120	13.119	$(0,0,0,1) \rightarrow$ (0,0,0,0)	13.120	$(0,0,0,0) \rightarrow (0,0,0,0)$	
Π	13.150	13.153	$(0,0,0,0) \rightarrow (0,0,0,0)$	13.146	$(0,0,0,0) \rightarrow (0,0,0,1)$	
III	13.180	13.186	$(0,0,0,0) \rightarrow (0,0,0,1)$	13.190	$(0,0,0,0) \rightarrow (0,1,0,0)$	
IV	13.230	13.228	$(0,0,0,0) \rightarrow$ (0,1,0,0) & $(0,0,0,0) \rightarrow$	13.256	$(0,0,0,0) \rightarrow$ (1,0,0,0)	
v	13.295	13.300	(0,0,0,2) $(0,0,0,0) \rightarrow$ (1,0,0,0)	13.282	$(0,0,0,0) \rightarrow$ (1,0,0,1)	

 $^a\,$ calculated at the $\omega B97XD$ /aug-cc-pVTZ level after a shift to higher energy by 0.410 eV.

present FC simulation is sufficiently plausible.

As indicated in Table 5, the present and Jadrny *et al.*'s assignment [26] are controversial due to the different 0–0 band assignments. On the other hand, although Pradeep *et al.* [12] correctly pointed out the dominant vibrational modes of ν_1^+ and ν_4^+ in photoionization to the B²B₁ state, they achieved an obviously smaller AIE value (13.078 eV) due to insufficient spectral resolution. Fortunately, the development of experimental techniques has efficiently improved the resolution of TPES, which, with the aid of theoretical calculations, has continuously provided opportunities for complement and correction of experimental data. Based on the whole band simulation in Fig. 4a, we are highly confident in our conclusions for the B²B₁ state, including its vibrational frequencies and AIE of 13.150 \pm 0.005 eV.

Likewise, we also performed FC factor simulation in the energy range of C^2A_1 , and plotted the experimental and simulated spectra together in Fig. 4b. Although no distinct vibrational structure can be discerned due to overlapping by the high-energy tail of the B^2B_1 band, a brief and reliable contribution can be identified according to the well-fitted spectral contour. As predicted by the geometric calculations, more complicated vibrational excitations are observed in photoionization towards the C²A₁ state. This deduction is confirmed by the FC simulations. As shown in Fig. 4b, at least four combined vibrational progressions are involved with the $X^{1}A_{1}(0,0,0,0) \rightarrow C^{2}A_{1}(0,0,0,n)$ (n = 0–5) transition. Moreover, the intensities of several hot bands from the $X^{1}A_{1}(0,0,0,1)$ level of neutral CF₂Cl₂ are also considerable. Therefore, the detailed vibrational assignment is meaningless. However, an AIE value of 13.340 eV for the C²A₁ state can be approximately derived from the comparison between the experimental and simulated spectra. Since the FC simulation at the $\omega B97XD$ level shows a great agreement with the experimental data of the B^2B_1 band, its performance on the C^2A_1 band can be trusted, and thus, the AIE value of C^2A_1 is within an energy uncertainty of 0.015 eV (as thrice error as the instrumental resolution) according to the peak maximum in TPE spectrum.

4. Conclusions

In this work, we measured the TPES of CF₂Cl₂ in the 11.70–13.90 eV photon energy range, where four lowest electronic states of the CF₂Cl₂⁺ cation, X²B₂, A²A₂, B²B₁, and C²A₁, were involved. The B²B₁ band is observed with some distinct vibrational structures, while no vibrational peaks can be discernible for the C²A₁ band partly due to the overlap of the B²B₁ high-energy tail. To achieve precise determination of AIEs towards these electronic states, the reliable vibrational assignments for these two bands are necessary. Thus, DFT calculations at the ω B97XD/aug-cc-pVTZ level were performed to obtain optimized geometries,

HOMO orbitals, and vibrational frequencies of the neutral CF₂Cl₂ and the corresponding cation in the B²B₁ and C²A₁ states. The FC factors for the CF₂Cl₂(X¹A₁) \rightarrow CF₂Cl₂(B²B₁ or C²A₁) transitions were then calculated to simulate vibrational structures of TPES. Based on the well-simulated spectra, the distinct vibrational structures of the B²B₁ band observed in experiment were reliably assigned. Therefore, the AIE towards the B²B₁ ionic state was precisely determined to be 13.150 ± 0.005 eV as the 0–0 transition energy, as well as a few vibrational frequencies of $\nu_1^+ = 1170 \text{ cm}^{-1}$, $\nu_2^+ = 645 \text{ cm}^{-1}$, and $\nu_4^+ = 242 \text{ cm}^{-1}$. Similarly, the AIE towards the C²A₁ ionic state was suggested to be 13.340 eV approximately according to its plausible FC simulation, although no discernible vibrational structure was identified.

CRediT authorship contribution statement

Baokun Shan: Data curation, Formal analysis, Writing - original draft. Hanhui Zhang: Investigation, Visualization. Tongpo Yu: . Yan Chen: . Xiangkun Wu: Methodology. Xiaoguo Zhou: Conceptualization, Writing - review & editing, Supervision, Funding acquisition. Shilin Liu: Supervision, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This work was financially supported by the National Key Research and Development program of China (No. 2016YFF0200502), and the National Natural Science Foundation of China (No. 21903079 and 21873089). X. Zhou also thanks the USTC-NSRL Association for financial support.

References

- S. Solomon, Stratospheric ozone depletion: A review of concepts and history, Rev. Geophys. 37 (3) (1999) 275–316.
- [2] B.J. Finlayson-Pitts, J.N. Pitts Jr, Chemistry of the upper and lower atmosphere: theory, experiments, and applications, Elsevier, 1999.
- [3] D.J. Jacob, Introduction to atmospheric chemistry, Princeton University Press, 1999.
- [4] M.J. Molina, F.S. Rowland, Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone, Nature 249 (5460) (1974) 810–812.
- [5] H.W. Jochims, W. Lohr, H. Baumgärtel, Photoreactions of small organic molecules V. Absorption-, photoion-and resonancephotoelectron-spectra of CF₃Cl₂, CF₂Cl₂, CFCl₃ in the energy range 10–25 eV, Ber. Bunsenges. Phys. Chem. 80 (2) (1976) 130–138.
- [6] J.M. Ajello, W.T. Huntress, P. Rayermann, A photoionization mass spectrometer study of CFCl₃, CF₂Cl₂, and CF₃Cl, J. Chem. Phys. 64 (11) (1976) 4746–4754.
- [7] H. Schenk, H. Oertel, H. Baumgärtel, Photoreactions of small organic molecules VII photoionization studies on the ion-pair formation of the fluorochloromethanes CF₂Cl₂, CF₃Cl, and CFCl₃, Ber. Bunsenges. Phys. Chem. 83 (7) (1979) 683–691.
- [8] R.F. Baker, J.T. Tate, Ionization and dissociation by electron impact in CCl₂F₂ and in CCl₄ vapor, Phys. Rev. 53 (1938) 683.
- [9] X. Wu, G. Tang, H. Zhang, X. Zhou, S. Liu, F. Liu, L. Sheng, B. Yan, Cl-Loss dynamics in the dissociative photoionization of CF₃Cl with threshold photoelectron–photoion coincidence imaging, Phys. Chem. Chem. Phys. 20 (7) (2018) 4917–4925.
- [10] D.P. Seccombe, R.P. Tuckett, B.O. Fisher, Fragmentation of the valence states of CF₂Cl¹₂, CF₂H¹₂, and CF₂Br² + studied by threshold photoelectron–photoion coincidence spectroscopy, J. Chem. Phys. 114 (9) (2001) 4074–4088.
- T. Liu, M.-B. Huang, H.-W. Xi, CASPT2 study on electronic states of the dichlorodifluoromethane cation, Chem. Phys. 332 (2-3) (2007) 277–283.
 T. Data D. Chicker, Witch exclusion in the state of the st
- [12] T. Pradeep, D.A. Shirley, High resolution photoelectron spectroscopy of CH₂F₂, CH₂Cl₂ and CF₂Cl₂ using supersonic molecular beams, J. Electron Spectrosc. Relat. Phenom. 66 (1-2) (1993) 125–138.
- [13] N. Chuan-Gang, R. Xue-Guang, D. Jing-Kang, S.u. Guo-Lin, Z. Shu-Feng, H. Feng, L. i. Gui-Qin, Investigation of outer valence orbital of CF₂Cl₂ by a new type of electron momentum spectrometer, Chin. Phys. 14 (12) (2005) 2467–2473.
- [14] X. Shan, X.J. Chen, L.X. Zhou, Z.J. Li, T. Liu, X.X. Xue, K.Z. Xu, High resolution electron momentum spectroscopy of dichlorodifluoromethane: Unambiguous assignments of outer valence molecular orbitals, J. Chem. Phys. 125 (15) (2006), 154307.

- [15] D.P. Seccombe, R.Y.L. Chim, R.P. Tuckett, H.W. Jochims, H. Baumgärtel, Vacuum–ultraviolet absorption and fluorescence spectroscopy of CF₂H₂, CF₂Cl₂, and CF₂Br 2 in the range 8–22 eV, J. Chem. Phys. 114 (9) (2001) 4058–4073.
- [16] H.H. Zhang, T.P. Yu, X.K. Wu, Y. Chen, B.K. Shan, X.G. Zhou, X.H. Dai, S.L. Liu, Ionization energy and thermochemistry of CF₂Cl₂ determined from threshold photoelectron spectroscopy, Chem. Phys. Lett. 774 (2021), 138631.
- [17] Y. Chen, T.P. Yu, X.K. Wu, X.G. Zhou, S.L. Liu, F.Y. Liu, X.H. Dai, C-F and C-H bond cleavage mechanisms of trifluoromethane ions in low-lying electronic states: Threshold photoelectron-photoion coincidence imaging and theoretical investigations, Phys. Chem. Chem. Phys. 22 (24) (2020) 13808–13817.
- [18] T.P. Yu, X.K. Wu, X.G. Zhou, A. Bodi, P. Hemberger, Hydrogen migration as a potential driving force in the thermal decomposition of dimethoxymethane: New insights from pyrolysis imaging photoelectron photoion coincidence spectroscopy and computations, Combust. Flame. 222 (2020) 123–132.
- [19] X. Wu, X. Zhou, P. Hemberger, A. Bodi, Conformers, electronic states, and diabolical conical intersections in the valence photoelectron spectroscopy of halocyclohexanes, J. Chem. Phys. 153 (5) (2020) 054305, https://doi.org/ 10.1063/5.0018293.
- [20] X.K. Wu, X.G. Zhou, P. Hemberger, A. Bodi, A guinea pig for conformer selectivity and mechanistic insights into dissociative ionization by photoelectron photoion coincidence: Fluorocyclohexane, Phys. Chem. Chem. Phys. 22 (4) (2020) 2351–2360.
- [21] L. Wang, J. Han, Q.Q. Yuan, W.J. Cao, X.G. Zhou, S.L. Liu, X.B. Wang, Electron affinity and electronic structure of hexafluoroacetone (HFA) revealed by photodetaching the [HFA] (center dot) (-) Radical Anion, J. Phys. Chem. A. 125 (3) (2021) 746–753.
- [22] L. Wang, Q.Q. Yuan, W.J. Cao, J. Han, X.G. Zhou, S.L. Liu, X.B. Wang, Probing orientation-specific charge-dipole interactions between hexafluoroisopropanol and halides: A joint photoelectron spectroscopy and theoretical study, J. Phys. Chem. A. 124 (10) (2020) 2036–2045.
- [23] H. Zhang, W. Cao, Q. Yuan, L. Wang, X. Zhou, S. Liu, X.-B. Wang, Spectroscopic evidence for intact carbonic acid stabilized by halide anions in the gas phase, Phys. Chem. Chem. Phys. 22 (35) (2020) 19459–19467.
- [24] J.C. Bunzli, D.C. Frost, F.G. Herring, C.A. McDowell, Assignment of the doublet states arising from ionization of chlorine lone-pairs in molecules possessing $C_{2\upsilon}$ symmetry, J. Electron Spectrosc. Relat. Phenom. 9 (3) (1976) 289–305.
- [25] T. Cvitaš, H. Güsten, L. Klasinc, Photoelectron spectra of chlorofluoromethanes, J. Chem. Phys. 67 (6) (1977) 2687–2691.
- [26] R. Jadrny, L. Karlsson, L. Mattsson, K. Siegbahn, Valence electron spectra of the chlorofluoromethanes CF₃Cl, CF₂Cl₂ and CFCl₃, Phys. Scr. 16 (5-6) (1977) 235–241.
- [27] K. Takeshita, A theoretical study on the lonic states and the photoelectron spectra of dichlorodifluoromethane (CF₂Cl₂), J. Mol. Spectrosc. 142 (1) (1990) 1–9.
- [28] X. Tang, X. Zhou, M. Niu, S. Liu, J. Sun, X. Shan, F. Liu, L. Sheng, A threshold photoelectron-photoion coincidence spectrometer with double velocity imaging using synchrotron radiation, Rev. Sci. Instrum. 80 (11) (2009) 113101, https://doi. org/10.1063/1.3250872.
- [29] S. Wang, R. Kong, X. Shan, Y. Zhang, L. Sheng, Z. Wang, L. Hao, S. Zhou, Performance of the atomic and molecular physics beamline at the National Synchrotron Radiation Laboratory, J. Synchrotron Radiat. 13 (6) (2006) 415–420.
- [30] A. Bodi, B. Sztáray, T. Baer, M. Johnson, T. Gerber, Data acquisition schemes for continuous two-particle time-of-flight coincidence experiments, Rev. Sci. Instrum. 78 (8) (2007) 084102, https://doi.org/10.1063/1.2776012.
- [31] X.-K. Wu, X.-F. Tang, X.-G. Zhou, S.-L. Liu, Dissociation dynamics of energyselected ions using threshold photoelectron-photoion coincidence velocity imaging, Chin. J. Chem. Phys. 32 (1) (2019) 11–22.
- [32] T.P. Yu, X.K. Wu, X.H. Ning, Y. Chen, X.G. Zhou, X.H. Dai, F.Y. Liu, S.L. Liu, Rovibrational distribution of NO⁺ dissociated from NO⁺₂ ions in the a³B₂ and b³A₂ states: a slow "impulsive" dissociation example revealed from threshold photoelectron-photoion coincidence imaging, J. Phys. Chem. A. 125 (16) (2021) 3316–3326.
- [33] X.K. Wu, T.P. Yu, Y. Chen, X.G. Zhou, S.L. Liu, X.H. Dai, F.Y. Liu, L.S. Sheng, Dissociative photoionization of CF₃Cl via the C²E and D²E states: competition of the C-F and C-Cl bond cleavages, Phys. Chem. Chem. Phys. 21 (9) (2019) 4998–5005.
- [34] X.K. Wu, X.G. Zhou, P. Hemberger, A. Bodi, Dissociative photoionization of chloro-, bromo-, and iodocyclohexane: thermochemistry and the weak C-Br Bond in the cation, J. Phys. Chem. A. 125 (2) (2021) 646–656.
- [35] X. Wu, X. Zhou, S. Bjelić, P. Hemberger, A. Bodi, Valence photoionization and energetics of vanillin, a sustainable feedstock candidate, J. Phys. Chem. A. 125 (16) (2021) 3327–3340.
- [36] J.D. Chai, M. Head-Gordon, Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections, Phys. Chem. Chem. Phys. 10 (44) (2008) 6615–6620.
- [37] M. Lewerenz, B. Nestmann, P.J. Bruna, S.D. Peyerimhoff, The electronic spectrum, photodecomposition and dissociative electron attachment of CF₂Cl₂: An ab initio configuration interaction study, J. Mol. Struct. (Thoechem.) 123 (3–4) (1985) 329–342.
- [38] V. A. Mozhayskiy, A. I. Krylov, ezSpectrum, http://iopenshell.usc.edu/downloads/
- [39] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, et al., Gaussian 16, revision C.01; Gaussian, Inc.: Wallingford, CT, 2016.
- [40] D.W. Turner, A.D. Baker, C. Baker and C.R. Brundle, Molectdar Photoelectron Spectroscopy, Philos. Trans. Roy. Sot. London, Ser. A, Mathematical and Physical Sciences. 268 (1184) (1970) 7-31.